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LIT Review

1 We wanted to duplicate the capability of DeepMind's Agent 
57, announced 2020, here: Agent 57: Outperforming the 
human Atari benchmark

https://deepmind.com/blog/article/Agent57-Outperforming-the-

human-Atari-benchmark

4 Adria and Chris then discussed various implementations of this 
available online, and we thought that the best baseline would be 
the ACME framework from DeepMind, here: Acme: A Research 
Framework for Distributed Reinforcement Learning

https://arxiv.org/abs/2006.00979
https://github.com/deepmind/acme

3 Once we started communication with Adria Badia, he 
recommended that I start my efforts based on another effort 
called R2D2, here: Recurrent Experience Replay in 
Distributed Reinforcement Learning (R2D2)

https://deepmind.com/research/publications/2019/recurrent-

experience-replay-distributed-reinforcement-learning

2 This was apparently an extension of prior work (Badia et al) on a 
system called NGU, here: Never Give Up: Learning Directed 
Exploration Strategies

https://arxiv.org/abs/2002.06038

5
Experimented with ACME, and was able to successfully 
implement/test (on GCP) most of these examples, including 
R2D2, here:

https://github.com/deepmind/acme/tree/master/examples

6 Where we left off was that Adria recommended combining the 
functionality of NGU with the functionality of R2D2 (on Acme), 
as he thought this would be a lesser clone of Agent 57 that he 
could make further suggestions on. He has provided a few code 
samples, but we (Chris) got stuck on the TF matrix 
transformations.
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Curiosity Learning and NGU

Curiosity: learning in environments with sparse rewards

Give intrinsic rewards to the agent based on its

inability to predict actions generating successive states

As the agent visits the same (or similar states) it gets better at 

predicting transitions, thus intrinsic rewards go to 0 (boredom)

Another pitfall is rewarding passive observation (agent is 

rewarded for observing unpredictable noise without acting)

Never Give Up solves these problems using concepts of 

lifelong/episodic curiosity and controllable states
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Credit: Never Give Up: Learning Directed Exploration 

Strategies, Badia et. al.

NGU IS A BOREDOM FREE C U R I O S I T Y- B AS E D RL METHOD



NGU Architecture

CNN converts screen images to abstract feature representations

Embedding features used to learn controllable states and 

to generate intrinsic rewards

Distance between inter-episode controllable states is 

used to generate intrinsic rewards (episodic curiosity )

RND network generates multiplicative constant for the 

episodic reward (life-long curiosity)

What about the explore-exploit dilemma?
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Credit: Never Give Up: Learning Directed Exploration 

Strategies, Badia et. al.



NGU Architecture

Use UVFA to approximate Q(x, a, θ, βi) -> rt = re + βiri

Discrete number of β between βmin and βmax where we 

include 0 and 1.

Turn off exploratory policy by acting greedily with 

respect to Q(x, a, θ, 0)

Learn to exploit without seeing any extrinsic reward

Concatenate one hot encoding of beta to action and both 

rewards and feed into LSTM core for the agent
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Credit: Never Give Up: Learning Directed Exploration 

Strategies, Badia et. al.



NGU Implementation

Start with minimum viable implementation of 

never give up

Use DeepMind’s tools (ACME) to the greatest 
extent possible

Sonnet for the embedding network

Reverb for data storage and retrieval
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V 0 . 1  I m p l e m e n t a t i o n



NGU Implementation

Lack of multithreading (TF2) 

No life-long curiosity module

Used the n-step loss instead of retrace loss

Didn’t use UVFA, so no β
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V 0 . 1  I m p l e m e n t a t i o n  D r a w b a c k s



From R2D2 to Full NGU

Switched from TensorFlow to JAX as backend 
framework to enable distributed implementation

Inverse dynamics model for intrinsic rewards 
computations – verified by DiscoMaze experiment

Random Network Distillation for intrinsic 
reward modulation

Replace n-step bootstrapping with retrace
learning algorithm

Replace Q-network with Universal Value Function 
Approximator (UVFA)
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Disco Maze Test

Test single actor implementation in disco maze 
environment

21x21 randomly generated grid; no extrinsic 
rewards

At each time step the blocks change color, 
which tempts pathological behavior

NGU agent manages to explore a significant 
fraction of the available states

RND and random embeddings flop in this 
environment
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Strategies, Badia et. al.



Our Disco Maze Results
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Expanding the ACME Feature Set

Metrics customization

Implemented flexible logging module which can be extended with 

any custom metric

Added new metric (actions ratio per episode), which was 

not previously available in the framework

Restoring model from checkpoint

Implemented script for restoring model from checkpoint, because it 

wasn't initially supported by ACME

Note, that optimizer state and training metadata are preserved, 

so training can be continued at any point

Action ratios per episode plot
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Expanding the ACME Feature Set

Also, saving episode examples was implemented for 

monitoring model performance over time.

Lunar Lander episode stored in TensorBoard

Videos can be logged 

into TensorBoard or locally

Episode examples are 

logged each n-th episode

L O G  E P I S O D E  E X AM P L E S
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Beyond NGU

DeepMind eventually improved upon NGU with Agent57

Split parameterization for UVFA

Q(x, a, θ, j) = Q(x, a, θe, j) + βjQ(x, a, θi , j)

Meta-controller for automatically selecting 
which policy to use
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UVFA Parametrization
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Separate parametrization for extrinsic and 
intrinsic rewards

The implementation of the split in UVFA 
training mostly includes changes in learner, 
and the inference in the actor.
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META Controller

Selects which policy to use at training and evaluation time

Policies are represented by [β, γ] pair (also called mixtures –
larger mixture index means more exploratory behavior)

Results in agent learning when it's better to explore and 
when to exploit

Implemented as UCB multi-armed bandit

Extrinsic episode returns are used as rewards for the bandit

Each actor has its own meta controller

Implemented in actor_core.py



Distributed Training

Distributed agents can 
be trained in multiple 

processes or on 
multiple machines.

In a distributed setup, 
communication 

between nodes is 
handled by launchpad 
package.

Multiple machines 
training is executed 

on Vertex AI – a GCP 
for building and 
deploying AI models.
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V E R T E X  AI  T R AI N I N G  P I P E L I N E :

Package the code for every type of launchpad node (Actor, Learner, 

Replay Buffer) into a Docker container (using launchpad)

Build the Docker images locally or on Cloud Build

Specify the hardware requirements for each node type

Create a custom job on Vertex AI to train the agent

All training artifacts are saved into a Cloud Storage bucket.

1 2 3

Screenshot of Vertex AI training job configuration



Training Environments

©2022 Patterns and Predictions, Phil Tabor, and SoftServe, Inc. All rights reserved.

Easy: Boxing Medium: Zaxxon Hard: Montezuma Revenge

Arcade Learning Environment (ALE)



Code

Apache License

Code Mailing List:
https://groups.google.com/g/drlearner/

Contact:

Chris Poulin, Project Lead
chris@patternsandpredictions.com

Sponsored by Patterns and 
Predictions
www.patternsandpredictions.com
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