
DRLearner

DRLearner.org

Open Source Reinforcement Learning: Deep Dive
AGI-22

Phil Tabor

LIT Review

1 We wanted to duplicate the capability of DeepMind's Agent
57, announced 2020, here: Agent 57: Outperforming the
human Atari benchmark

https://deepmind.com/blog/article/Agent57-Outperforming-the-

human-Atari-benchmark

4 Adria and Chris then discussed various implementations of this
available online, and we thought that the best baseline would be
the ACME framework from DeepMind, here: Acme: A Research
Framework for Distributed Reinforcement Learning

https://arxiv.org/abs/2006.00979
https://github.com/deepmind/acme

3 Once we started communication with Adria Badia, he
recommended that I start my efforts based on another effort
called R2D2, here: Recurrent Experience Replay in
Distributed Reinforcement Learning (R2D2)

https://deepmind.com/research/publications/2019/recurrent-

experience-replay-distributed-reinforcement-learning

2 This was apparently an extension of prior work (Badia et al) on a
system called NGU, here: Never Give Up: Learning Directed
Exploration Strategies

https://arxiv.org/abs/2002.06038

5
Experimented with ACME, and was able to successfully
implement/test (on GCP) most of these examples, including
R2D2, here:

https://github.com/deepmind/acme/tree/master/examples

6 Where we left off was that Adria recommended combining the
functionality of NGU with the functionality of R2D2 (on Acme),
as he thought this would be a lesser clone of Agent 57 that he
could make further suggestions on. He has provided a few code
samples, but we (Chris) got stuck on the TF matrix
transformations.

©2022 Patterns and Predictions, Phil Tabor, and SoftServe, Inc. All rights reserved.

Curiosity Learning and NGU

Curiosity: learning in environments with sparse rewards

Give intrinsic rewards to the agent based on its

inability to predict actions generating successive states

As the agent visits the same (or similar states) it gets better at

predicting transitions, thus intrinsic rewards go to 0 (boredom)

Another pitfall is rewarding passive observation (agent is

rewarded for observing unpredictable noise without acting)

Never Give Up solves these problems using concepts of

lifelong/episodic curiosity and controllable states

©2022 Patterns and Predictions, Phil Tabor, and SoftServe, Inc. All rights reserved.

Credit: Never Give Up: Learning Directed Exploration

Strategies, Badia et. al.

NGU IS A BOREDOM FREE C U R I O S I T Y- B AS E D RL METHOD

NGU Architecture

CNN converts screen images to abstract feature representations

Embedding features used to learn controllable states and

to generate intrinsic rewards

Distance between inter-episode controllable states is

used to generate intrinsic rewards (episodic curiosity)

RND network generates multiplicative constant for the

episodic reward (life-long curiosity)

What about the explore-exploit dilemma?

©2022 Patterns and Predictions, Phil Tabor, and SoftServe, Inc. All rights reserved.

Credit: Never Give Up: Learning Directed Exploration

Strategies, Badia et. al.

NGU Architecture

Use UVFA to approximate Q(x, a, θ, βi) -> rt = re + βiri

Discrete number of β between βmin and βmax where we

include 0 and 1.

Turn off exploratory policy by acting greedily with

respect to Q(x, a, θ, 0)

Learn to exploit without seeing any extrinsic reward

Concatenate one hot encoding of beta to action and both

rewards and feed into LSTM core for the agent

©2022 Patterns and Predictions, Phil Tabor, and SoftServe, Inc. All rights reserved.

Credit: Never Give Up: Learning Directed Exploration

Strategies, Badia et. al.

NGU Implementation

Start with minimum viable implementation of

never give up

Use DeepMind’s tools (ACME) to the greatest
extent possible

Sonnet for the embedding network

Reverb for data storage and retrieval

©2022 Patterns and Predictions, Phil Tabor, and SoftServe, Inc. All rights reserved.

V 0 . 1 I m p l e m e n t a t i o n

NGU Implementation

Lack of multithreading (TF2)

No life-long curiosity module

Used the n-step loss instead of retrace loss

Didn’t use UVFA, so no β

©2022 Patterns and Predictions, Phil Tabor, and SoftServe, Inc. All rights reserved.

V 0 . 1 I m p l e m e n t a t i o n D r a w b a c k s

From R2D2 to Full NGU

Switched from TensorFlow to JAX as backend
framework to enable distributed implementation

Inverse dynamics model for intrinsic rewards
computations – verified by DiscoMaze experiment

Random Network Distillation for intrinsic
reward modulation

Replace n-step bootstrapping with retrace
learning algorithm

Replace Q-network with Universal Value Function
Approximator (UVFA)

©2022 Patterns and Predictions, Phil Tabor, and SoftServe, Inc. All rights reserved.

Disco Maze Test

Test single actor implementation in disco maze
environment

21x21 randomly generated grid; no extrinsic
rewards

At each time step the blocks change color,
which tempts pathological behavior

NGU agent manages to explore a significant
fraction of the available states

RND and random embeddings flop in this
environment

©2022 Patterns and Predictions, Phil Tabor, and SoftServe, Inc. All rights reserved. Credit: Never Give Up: Learning Directed Exploration

Strategies, Badia et. al.

Our Disco Maze Results

©2022 Patterns and Predictions, Phil Tabor, and SoftServe, Inc. All rights reserved.

Expanding the ACME Feature Set

Metrics customization

Implemented flexible logging module which can be extended with

any custom metric

Added new metric (actions ratio per episode), which was

not previously available in the framework

Restoring model from checkpoint

Implemented script for restoring model from checkpoint, because it

wasn't initially supported by ACME

Note, that optimizer state and training metadata are preserved,

so training can be continued at any point

Action ratios per episode plot

©2022 Patterns and Predictions, Phil Tabor, and SoftServe, Inc. All rights reserved.

Expanding the ACME Feature Set

Also, saving episode examples was implemented for

monitoring model performance over time.

Lunar Lander episode stored in TensorBoard

Videos can be logged

into TensorBoard or locally

Episode examples are

logged each n-th episode

L O G E P I S O D E E X AM P L E S

©2022 Patterns and Predictions, Phil Tabor, and SoftServe, Inc. All rights reserved.

Beyond NGU

DeepMind eventually improved upon NGU with Agent57

Split parameterization for UVFA

Q(x, a, θ, j) = Q(x, a, θe, j) + βjQ(x, a, θi , j)

Meta-controller for automatically selecting
which policy to use

©2022 Patterns and Predictions, Phil Tabor, and SoftServe, Inc. All rights reserved.

UVFA Parametrization

©2022 Patterns and Predictions, Phil Tabor, and SoftServe, Inc. All rights reserved.

Separate parametrization for extrinsic and
intrinsic rewards

The implementation of the split in UVFA
training mostly includes changes in learner,
and the inference in the actor.

©2022 Patterns and Predictions, Phil Tabor, and SoftServe, Inc. All rights reserved.

META Controller

Selects which policy to use at training and evaluation time

Policies are represented by [β, γ] pair (also called mixtures –
larger mixture index means more exploratory behavior)

Results in agent learning when it's better to explore and
when to exploit

Implemented as UCB multi-armed bandit

Extrinsic episode returns are used as rewards for the bandit

Each actor has its own meta controller

Implemented in actor_core.py

Distributed Training

Distributed agents can
be trained in multiple

processes or on
multiple machines.

In a distributed setup,
communication

between nodes is
handled by launchpad
package.

Multiple machines
training is executed

on Vertex AI – a GCP
for building and
deploying AI models.

©2022 Patterns and Predictions, Phil Tabor, and SoftServe, Inc. All rights reserved.

V E R T E X AI T R AI N I N G P I P E L I N E :

Package the code for every type of launchpad node (Actor, Learner,

Replay Buffer) into a Docker container (using launchpad)

Build the Docker images locally or on Cloud Build

Specify the hardware requirements for each node type

Create a custom job on Vertex AI to train the agent

All training artifacts are saved into a Cloud Storage bucket.

1 2 3

Screenshot of Vertex AI training job configuration

Training Environments

©2022 Patterns and Predictions, Phil Tabor, and SoftServe, Inc. All rights reserved.

Easy: Boxing Medium: Zaxxon Hard: Montezuma Revenge

Arcade Learning Environment (ALE)

Code

Apache License

Code Mailing List:
https://groups.google.com/g/drlearner/

Contact:

Chris Poulin, Project Lead
chris@patternsandpredictions.com

Sponsored by Patterns and
Predictions
www.patternsandpredictions.com

©2022 Patterns and Predictions, Phil Tabor, and SoftServe, Inc.

