Open Source Reinforcement Learning: Deep Dive

AGI-22 '
~ Phil Tabor

DRLearner.org

B LIT Review

We wanted to duplicate the capability of DeepMind's Agent
57, announced 2020, here: Agent 57: Outperforming the
human Atari benchmark

https://deepmind.com/blog/article/Agent57-Outperforming-the-
human-Atari-benchmark

This was apparently an extension of prior work (Badia et al) on a
system called NGU, here: Never Give Up: Learning Directed
Exploration Strategies

https://arxiv.org/abs/2002.06038

Once we started communication with Adria Badia, he
recommended that | start my efforts based on another effort
called R2D2, here: Recurrent Experience Replay in
Distributed Reinforcement Learning (R2D2)

https://deepmind.com/research/publications/2019/recurrent-
experience-replay-distributed-reinforcement-learning

©2022 Patterns and Predictions, Phil Tabor, and SoftServe, Inc. All rights reserved.

Adria and Chris then discussed various implementations of this
available online, and we thought that the best baseline would be
the ACME framework from DeepMind, here: Acme: A Research
Framework for Distributed Reinforcement Learning

https://arxiv.org/abs/2006.00979
https://github.com/deepmind/acme

Experimented with ACME, and was able to successfully
implement/test (on GCP) most of these examples, including
R2D2, here:

https://github.com/deepmind/acme/tree/master/examples

Where we left off was that Adria recommended combining the
functionality of NGU with the functionality of R2D2 (on Acme),
as he thought this would be a lesser clone of Agent 57 that he
could make further suggestions on. He has provided a few code
samples, but we (Chris) got stuck on the TF matrix
transformations.

I Curiosity Learning and NGU

NGU IS ABOREDOM FREE CURIOSITY-BASED RL METHOD

Curiosity: learning in environments with sparse rewards

e Give intrinsic rewards to the agent based on its
inability to predict actions generating successive states

* As the agent visits the same (or similar states) it gets better at
predicting transitions, thus intrinsic rewards go to 0O (boredom)

e Another pitfall is rewarding passive observation (agent is
rewarded for observing unpredictable noise without acting)

* Never Give Up solves these problems using concepts of
lifelong/episodic curiosity and controllable states

©2022 Patterns and Predictions, Phil Tabor, and SoftServe, Inc. All rights reserved.

plalzs, p41)
O
classifier h é

Iy
: embedding I\
m.m ork £

Ti41

L RND random network
life-long novelty ~

module g multiplicative
o modulation
i
—_—
@ g O—r;
- —| | RND prediction network
k-nearest
£y neighbors
controllable state
O .episodic
L. T't
episodic novelty embedding network
module
f episodic memory ;‘-I

Credit: Never Give Up: Learning Directed Exploration
Strategies, Badia et. al.

B NGU Architecture

CNN converts screen images to abstract feature representations

e Embedding features used to learn controllable states and
to generate intrinsic rewards

» Distance between inter-episode controllable states is
used to generate intrinsic rewards (episodic curiosity)

» RND network generates multiplicative constant for the
episodic reward (life-long curiosity)

* What about the explore-exploit dilemma?

©2022 Patterns and Predictions, Phil Tabor, and SoftServe, Inc. All rights reserved.

plalzs, p41)
O
classifier h é

Iy
: embedding I\
m.m ork £

Ti41

L RND random network
life-long novelty ~

module 9 multiplicative
o % o modulation
g

K |
ye T
- —| | RND prediction network
k-nearest

£y neighbors
controllable state

O r;-piamih‘

e -

episodic novelty embedding network

module f
episodic memory A I

Credit: Never Give Up: Learning Directed Exploration
Strategies, Badia et. al.

B NGU Architecture

¢ Use UVFA to approximate Q(x, a, 6, ;) -> r, =ré + B

e Discrete number of 8 between B, and B, Where we
include 0 and 1.

» Turn off exploratory policy by acting greedily with
respect to Q(x, a, 6, 0)

» Learn to exploit without seeing any extrinsic reward

e Concatenate one hot encoding of beta to action and both
rewards and feed into LSTM core for the agent

©2022 Patterns and Predictions, Phil Tabor, and SoftServe, Inc. All rights reserved.

Qt

LSTM Care |

Convolutional
Torso

Q-1 T4y Ty_1 3

Tt

Credit: Never Give Up: Learning Directed Exploration
Strategies, Badia et. al.

B NGU Implementation

V0.1 Implementation

(self, network: network.EmbeddingNetwork,
environment_spec: specs.EnvironmentSpec,
address: Any,

o Start with minimum viable implementation of Fle Gt Vew Bockaais
Hlass Emt rk(base.Module):
. r (self, environment_spec: specs.EnvironmentSpec,
never give up : n_outputs: int = 18):
r(EmbeddingNetwork, self) init__()
self
sel’
rn
t__(self, network: network.EmbeddingNetwork,

» Use DeepMind’s tools (ACME) to the greatest R b e b AT

dataset: tf.da
. reward_datase
extent possible reverb_client:
)i
self._network network
self. _client reverb_client
self._dataset = dataset
self._rew dataset = reward_dataset
self._iterator: Iterator[reverb.ReplaySample] = (dataset)

® Sonnet for the embeddlng network self._r_iterator: Iterator[reverb.ReplaySample] reward_dataset)

self.distance_sum = np.zeros(1)
self.distance_counts = np.zeros(1)

tf2_utils.create_variables(network=self._network,
s
environment_spec.observations.observation,
environment_spec.observations.observation]

» Reverb for data storage and retrieval oy ’
de in(self):
data : -')(sel_f‘ iterator)
data = data.data
, actions, ’ , extra =

©2022 Patterns and Predictions, Phil Tabor, and SoftServe, Inc. All rights reserved.

B NGU Implementation

V0.1 Implementation Drawbacks

(self, network: network.EmbeddingNetwork,
environment_spec: specs.EnvironmentSpec,
address: Any,

o Lack of multithreading (TF2) AT —
ass Emt g k(base.Module):
' r (self, environment_spec: specs.EnvironmentSpec,
n_outputs: fint 18):
(EmbeddingNetwork, self) init__()
self.n aut. BT £

sel’ .
(self, network: network.EmbeddingNetwork,

o NO ||fe-|0ng CurlOSIty mOdule environment spe;ADsp cs.EnvironmentSpec,

dataset: tf.d a:

reward_datas tf.data.Dataset,
reverb_client: Optional[reverb.TFClient] = None,

self._network network
self. _client = reverb_client
self._dataset = data

self._rew_dataset = rd_dataset
self._iterator: Iterator[reverb. laySample] = (dataset)
® Used the n_step |OSS |nstead of retrace Ioss self._r_iterator: Iterator[reverb.ReplaySample] reward_dataset)

Lf .distance_sum = np.zeros(1)
self.distance_counts = np.zeros(1)

tf2_utils.create_variables(network=self._network,
input_sp
envir ent_spec.observations.observation,
environment_spec.observations.observation]

e Didn’t use UVFA, sono 3 fef ent . }

train(self):

data (self._iterator)
data = data.data

, actions, _, _, extra =

©2022 Patterns and Predictions, Phil Tabor, and SoftServe, Inc. All rights reserved.

B From R2D2 to Full NGU

“"“Defines local DRLearner agent, using JAX."""
typing import Optional

acme import specs
acme.utils import counting

e Switched from TensorFlow to JAX as backend
framework to enable distributed implementation I

-config import DRLe: Config

.network: t make_policy networks, DRLearnerNetworks

¢ |nverse dynamics model for intrinsic rewards e, ey e g
. """Local agent for DRLearner.
computations — verified by DiscoMaze experiment

This implements a single-process DRLearner agent.

« Random Network Distillation for intrinsic B

. spec: specs.EnvironmentSpec,

reward modulation S ————
config: DRLearnerconfig,
seed: int,

workdir: optional[str] = '~/acme',

~ Replace n-Step bootstrapping Wlth I’etrace : counter: Optional[counting.Counter] = None,
Iearnlng algorithm ngu_builder = DRLearnerBuilder(networks, config, num_actors_per_mixture=1)

super()._ init_ (
seed=seed,
environment_spec=spec,
builder-ngu_builder,

» Replace Q-network with Universal Value Function B

policy network=make policy networks(networks, config),
. workdir=workdir,
ApprOXImator (UVFA) min_replay_s: config.min_replay size,
samples_per_insert=config.samples_per_insert if config.samples_per_ insert \
10 / (config.burr length + config.trace_length),
batch_size=config.batch_size,

num_sgd_steps_per_step=config.num_sgd_steps_per_step,

counter=counter,

©2022 Patterns and Predictions, Phil Tabor, and SoftServe, Inc. All rights reserved.

B Disco Maze Test

e Test single actor implementation in disco maze
environment

e 21x21 randomly generated grid; no extrinsic

rewards
_ 1004 | e |
» At each time step the blocks change color, M AL A YT T TR
. . . I "-I.- "y 1 '] |
which tempts pathological behavior B
= L A
N i
» NGU agent manages to explore a significant g 60 : — Candian pmbadding
fraction of the available states bt II Action prediction embedding
751
e | Haseline RND
= 40
. . . j .'.
* RND and random embeddings flop in this 2
. 20-
environment
fp e A T T
0 50000 lO00O0 150000 200000 250000
Learner updates
©2022 Patterns and Predictions, Phil Tabor, and SoftServe, Inc. All rights reserved. Credit: Never Give Up: Learning Directed Exploration

Strategies, Badia et. al.

B Our Disco Maze Results

Unique States Visited

o7

o
o

a5

03

00

— Action Prediction Embeddings
Random Embeddings

0 i

0 25000 S0000 5000 100000 125000 150000
Leaner Steps

©2022 Patterns and Predictions, Phil Tabor, and SoftServe, Inc. All rights reserved.

175000

200000

B Expanding the ACME Feature Set

Restoring model from checkpoint action ratios per episode
1.0 -
» Implemented script for restoring model from checkpoint, because it
wasn't initially supported by ACME
0.8 -
» Note, that optimizer state and training metadata are preserved,
so training can be continued at any point e
2 0.6
[
=
o
. 1 e © 0.4
Metrics customization
e Implemented flexible logging module which can be extended with e
any custom metric
. ! . . . 0.0 -
» Added new metric (actions ratio per episode), which was

B
B

not previously available in the framework

Action ratios per episode plot

©2022 Patterns and Predictions, Phil Tabor, and SoftServe, Inc. All rights reserved.

B Expanding the ACME Feature Set

LOG EPISODE EXAMPLES

Also, saving episode examples was implemented for
monitoring model performance over time.

Episode examples are Videos can be logged
logged each n-th episode into TensorBoard or locally

©2022 Patterns and Predictions, Phil Tabor, and SoftServe, Inc. All rights reserved.

[[] Show actual image size

Brightness adjustment

Contrast adjustment

video_10

video_10 B8

tag: video_10
step 82

Mon Apr 11 2022 15:49:19 GMT+0300 (Eastern European

video_20

video_30

video_40

video_50

Lunar Lander episode stored in TensorBoard

BN Beyond NGU

s DRLearnerLearner (acme.Learner

DRLearnerlearner.

__init_ (self,
uvfa_unroll: networks_lib.FeedForwardNetwork,
uvfa_initial_state: networks_lib.FeedFc dNetwork,
. . . idm_action_pred: networks_lib. dNetwork,

¢ DeepMind eventually improved upon NGU with Agent57 A Tt (- et 2

batch_size: int,

beta_min: float,

beta_max: float,

gamma_min: float,

ganma_max: float,

num_mixtures: int,

» Split parameterization for UVFA

burn_in_length: int,

N\ — H H H tar, psilon: float,
Q(x, a, 6,]) =Q(x, a, 89,) + BQ(x, a, 0',)
max_priority weight: float,
target_update_period: int,
iterator: Iterator[reverb.ReplaySample],
uvfa_optimizer: optax.Gradient sformation,

* Meta-controller for automatically selecting idn_optinizer: optax.GradientTransfo

distillation_optimizer:
Wh'Ch p0|lcy to use idm_clip_steps: int,

distillation _clip_steps: int,

retrace_lambda: float,

tx_pair: rlax.TxPair = rlax.SIGNED_HYPERBOLIC PAIR,

clip_rewards: bool = False,

max_abs_reward: float = 1.,

use_core_state: bool = True,

prefetch int = 2,

replay_client: Optional[reverb.Client] = Noi

counter: Optional[counting.Counter] = None,

[loggers.Logger] = None):

epsilon_greedy prob = jax.vmap(

jax.vmap(epsilon greedy prob, in axes=(@, None), out axes=o0),

out_axes=0

F uvfa

sample: reverb.Replaysample,
rewards_t: jnp.ndarray,
core_state_extraction name: str = ‘extrinsic_core state’

Tuple[jnp.ndar

©2022 Patterns and Predictions, Phil Tabor, and SoftServe, Inc. All rights reserved. Complutes meah Trans Fored -Step 105 For 4 bateli of-eaquences.

B UVFA Parametrization

Separate parametrization for extrinsic and The implementation of the split in UVFA
intrinsic rewards training mostly includes changes in learner,
and the inference in the actor.

learner/Extrinsic Uvfa Loss B
00s h
om
leatnet/Uvia Loss g 1 3 aia l‘ j
il @ LA bl i
1 AR
]l .F..u;.\}!;y é 0 100 00 00 0 0 0 0
1 (AN,
0s ‘ Jp' i\l Wﬁ .
b \ W /\"' leamner/intrinsic Uvfa Loss 3 I3 1
/) W
¥
°]
0 200 &0 &0 800 1000 1200 H
{a) Sketch of the R2D2 Agent Figure 9. Skerch of the Apem5T.
4

I“' .Ju M@www

L] WO 200 00 400 SO 0 W

©2022 Patterns and Predictions, Phil Tabor, and SoftServe, Inc. All rights reserved.

B META Controller

Selects which policy to use at training and evaluation time

» Policies are represented by [B, y] pair (also called mixtures —
larger mixture index means more exploratory behavior)

* Results in agent learning when it's better to explore and
when to exploit

» Implemented as UCB multi-armed bandit

» Extrinsic episode returns are used as rewards for the bandit

e Each actor has its own meta controller

» Implemented in actor_core.py

©2022 Patterns and Predictions, Phil Tabor, and SoftServe, Inc. All rights reserved.

evaluator/Mixtureldx

BN Distributed Training

& montezuma_128_actors_agent57_208g_mem_replay_1652688960365_1

© custom job failed with efror message: CANCELED

Status Sto
1 2 3 Custom job 1D
Created M.
. Start time May
Distributed agents can Multiple machines In a distributed setup, Sapsad s 7 day
be trained in multiple training is executed communication Reglon
processes or on on Vertex Al —a GCP between nodes is Encryption type gle-managed key
multiple machines. for building and handled by launchpad
deploying Al models ackage Machine type (Worker pool 0) n1-highmenm-32
Eployfing] : @ f= Machine count (Worker pool 0)

Container Location (Worker pool 0) ger.io/gep 10149
Machine type (Worker pool 1)
Machine count (Worker pool 1)
Container Location (Warker pool 1) ger.io/gep 101 494-agent 57/tmpzkbr
Machine type (Worker pool 2) n1-highmem-16
Machine count (Worker pool 2)

Accelerator (Worker pool 2) NVIDIA_TESLA_P1D

Accelerator count (Warker pool 2)

VERTEX Al TRAINING PIPELINE:

o Package the code for every type of launchpad node (Actor, Learner,
Replay Buffer) into a Docker container (using launchpad)

Machine type (Worker pool 3)

» Build the Docker images locally or on Cloud Build :::,::::::;:::o:?;;s, = 101494 agentSTArpityOlend 20220516-113212-601428
» Specify the hardware requirements for each node type Dataset No managed datass

» Create a custom job on Vertex Al to train the agent :::::T b

» All training artifacts are saved into a Cloud Storage bucket. CL:;"’"’"""'"'"” St

Screenshot of Vertex Al training job configuration
©2022 Patterns and Predictions, Phil Tabor, and SoftServe, Inc. All rights reserved.

Bpdx-20220516-112052-3165

Container Location (Worker pool 2) jcr i6/gep101494-agent57/tmpOkafjk1 £ 20220516-112556- 189971

B Training Environments

Arcade Learning Environment (ALE)

Easy: Boxing Medium: Zaxxon Hard: Montezuma Revenge

©2022 Patterns and Predictions, Phil Tabor, and SoftServe, Inc. All rights reserved.

B Code

[Apache License
Code Mailing List:
https://groups.google.com/g/drlearner/

Contact:
Chris Poulin, Project Lead

chris@patternsandpredictions.com

Predictions

ﬂ Sponsored by Patterns and
www.patternsandpredictions.com

©2022 Patterns and Predictions, Phil Tabor, and SoftServe, Inc.

