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B LIT Review

We wanted to duplicate the capability of DeepMind's Agent
57, announced 2020, here: Agent 57: Outperforming the
human Atari benchmark

https://deepmind.com/blog/article/Agent57-Outperforming-the-
human-Atari-benchmark

This was apparently an extension of prior work (Badia et al) on a
system called NGU, here: Never Give Up: Learning Directed
Exploration Strategies

https://arxiv.org/abs/2002.06038

Once we started communication with Adria Badia, he
recommended that | start my efforts based on another effort
called R2D2, here: Recurrent Experience Replay in
Distributed Reinforcement Learning (R2D2)

https://deepmind.com/research/publications/2019/recurrent-
experience-replay-distributed-reinforcement-learning
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Adria and Chris then discussed various implementations of this
available online, and we thought that the best baseline would be
the ACME framework from DeepMind, here: Acme: A Research
Framework for Distributed Reinforcement Learning

https://arxiv.org/abs/2006.00979
https://github.com/deepmind/acme

Experimented with ACME, and was able to successfully
implement/test (on GCP) most of these examples, including
R2D2, here:

https://github.com/deepmind/acme/tree/master/examples

Where we left off was that Adria recommended combining the
functionality of NGU with the functionality of R2D2 (on Acme),
as he thought this would be a lesser clone of Agent 57 that he
could make further suggestions on. He has provided a few code
samples, but we (Chris) got stuck on the TF matrix
transformations.




I Curiosity Learning and NGU

NGU IS ABOREDOM FREE CURIOSITY-BASED RL METHOD

Curiosity: learning in environments with sparse rewards

e Give intrinsic rewards to the agent based on its
inability to predict actions generating successive states

* As the agent visits the same (or similar states) it gets better at
predicting transitions, thus intrinsic rewards go to 0O (boredom)

e Another pitfall is rewarding passive observation (agent is
rewarded for observing unpredictable noise without acting)

* Never Give Up solves these problems using concepts of
lifelong/episodic curiosity and controllable states
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B NGU Architecture

CNN converts screen images to abstract feature representations

e Embedding features used to learn controllable states and
to generate intrinsic rewards

» Distance between inter-episode controllable states is
used to generate intrinsic rewards (episodic curiosity )

» RND network generates multiplicative constant for the
episodic reward (life-long curiosity)

* What about the explore-exploit dilemma?
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B NGU Architecture

¢ Use UVFA to approximate Q(x, a, 6, ;) -> r, =ré + B

e Discrete number of 8 between B, and B, Where we
include 0 and 1.

» Turn off exploratory policy by acting greedily with
respect to Q(x, a, 6, 0)

» Learn to exploit without seeing any extrinsic reward

e Concatenate one hot encoding of beta to action and both
rewards and feed into LSTM core for the agent
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B NGU Implementation

V0.1 Implementation

(self, network: network.EmbeddingNetwork,
environment_spec: specs.EnvironmentSpec,
address: Any,

o Start with minimum viable implementation of Fle Gt Vew Bockaais
Hlass Emt rk(base.Module):
. r (self, environment_spec: specs.EnvironmentSpec,
never give up : n_outputs: int = 18):
r(EmbeddingNetwork, self) init__()
self
sel’
rn
t__(self, network: network.EmbeddingNetwork,

» Use DeepMind’s tools (ACME) to the greatest R b e b AT

dataset: tf.da
. reward_datase
extent possible reverb_client:
)i
self._network network
self. _client reverb_client
self._dataset = dataset
self._rew dataset = reward_dataset
self._iterator: Iterator[reverb.ReplaySample] = (dataset)

® Sonnet for the embeddlng network self._r_iterator: Iterator[reverb.ReplaySample] reward_dataset)

self.distance_sum = np.zeros(1)
self.distance_counts = np.zeros(1)

tf2_utils.create_variables(network=self._network,
s
environment_spec.observations.observation,
environment_spec.observations.observation]

» Reverb for data storage and retrieval oy ’
de in(self):
data : -')(sel_f‘ iterator)
data = data.data
, actions, ’ , extra =
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B NGU Implementation

V0.1 Implementation Drawbacks

(self, network: network.EmbeddingNetwork,
environment_spec: specs.EnvironmentSpec,
address: Any,

o Lack of multithreading (TF2) AT —
ass Emt g k(base.Module):
' r (self, environment_spec: specs.EnvironmentSpec,
n_outputs: fint 18):
(EmbeddingNetwork, self) init__()
self.n aut. BT £

sel’ .
(self, network: network.EmbeddingNetwork,

o NO ||fe-|0ng CurlOSIty mOdule environment spe;ADsp cs.EnvironmentSpec,

dataset: tf.d a:

reward_datas tf.data.Dataset,
reverb_client: Optional[reverb.TFClient] = None,

self._network network
self. _client = reverb_client
self._dataset = data

self._rew_dataset = rd_dataset
self._iterator: Iterator[reverb. laySample] = (dataset)
® Used the n_step |OSS |nstead of retrace Ioss self._r_iterator: Iterator[reverb.ReplaySample] reward_dataset)

Lf .distance_sum = np.zeros(1)
self.distance_counts = np.zeros(1)

tf2_utils.create_variables(network=self._network,
input_sp
envir ent_spec.observations.observation,
environment_spec.observations.observation]

e Didn’t use UVFA, sono 3 fef ent . }

train(self):

data (self._iterator)
data = data.data

, actions, _, _, extra =
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B From R2D2 to Full NGU

“"“Defines local DRLearner agent, using JAX."""
typing import Optional

acme import specs
acme.utils import counting

e Switched from TensorFlow to JAX as backend
framework to enable distributed implementation I

-config import DRLe: Config

.network: t make_policy networks, DRLearnerNetworks

¢ |nverse dynamics model for intrinsic rewards e, ey e g
. .. . . """Local agent for DRLearner.
computations — verified by DiscoMaze experiment

This implements a single-process DRLearner agent.

« Random Network Distillation for intrinsic B

. spec: specs.EnvironmentSpec,

reward modulation S ————
config: DRLearnerconfig,
seed: int,

workdir: optional[str] = '~/acme',

~ Replace n-Step bootstrapping Wlth I’etrace : counter: Optional[counting.Counter] = None,
Iearnlng algorithm ngu_builder = DRLearnerBuilder(networks, config, num_actors_per_mixture=1)

super()._ init_ (
seed=seed,
environment_spec=spec,
builder-ngu_builder,

» Replace Q-network with Universal Value Function B

policy network=make policy networks(networks, config),
. workdir=workdir,
ApprOXImator (UVFA) min_replay_s: config.min_replay size,
samples_per_insert=config.samples_per_insert if config.samples_per_ insert \
10 / (config.burr length + config.trace_length),
batch_size=config.batch_size,

num_sgd_steps_per_step=config.num_sgd_steps_per_step,

counter=counter,
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B Disco Maze Test

e Test single actor implementation in disco maze
environment

e 21x21 randomly generated grid; no extrinsic

rewards
_ 1004 | e |
» At each time step the blocks change color, M AL A YT T TR
. . . I "-I.- "y 1 '] |
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B Our Disco Maze Results
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B Expanding the ACME Feature Set

Restoring model from checkpoint action ratios per episode
1.0 -
» Implemented script for restoring model from checkpoint, because it
wasn't initially supported by ACME
0.8 -
» Note, that optimizer state and training metadata are preserved,
so training can be continued at any point e
2 0.6
[
=
o
. 1 e © 0.4
Metrics customization
e Implemented flexible logging module which can be extended with e
any custom metric
. ! . . . 0.0 -
» Added new metric (actions ratio per episode), which was

B
B

not previously available in the framework

Action ratios per episode plot
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B Expanding the ACME Feature Set

LOG EPISODE EXAMPLES

Also, saving episode examples was implemented for
monitoring model performance over time.

Episode examples are Videos can be logged
logged each n-th episode into TensorBoard or locally
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BN Beyond NGU

s DRLearnerLearner (acme.Learner

DRLearnerlearner.

__init_ (self,
uvfa_unroll: networks_lib.FeedForwardNetwork,
uvfa_initial_state: networks_lib.FeedFc dNetwork,
. . . idm_action_pred: networks_lib. dNetwork,

¢ DeepMind eventually improved upon NGU with Agent57 A Tt (- et 2

batch_size: int,

beta_min: float,

beta_max: float,

gamma_min: float,

ganma_max: float,

num_mixtures: int,

» Split parameterization for UVFA

burn_in_length: int,

N\ — H H H tar, psilon: float,
Q(x, a, 6, ]) =Q(x, a, 89, ) + BQ(x, a, 0', )
max_priority weight: float,
target_update_period: int,
iterator: Iterator[reverb.ReplaySample],
uvfa_optimizer: optax.Gradient sformation,

* Meta-controller for automatically selecting idn_optinizer: optax.GradientTransfo

distillation_optimizer:
Wh'Ch p0|lcy to use idm_clip_steps: int,

distillation _clip_steps: int,

retrace_lambda: float,

tx_pair: rlax.TxPair = rlax.SIGNED_HYPERBOLIC PAIR,

clip_rewards: bool = False,

max_abs_reward: float = 1.,

use_core_state: bool = True,

prefetch int = 2,

replay_client: Optional[reverb.Client] = Noi

counter: Optional[counting.Counter] = None,

[loggers.Logger] = None):

epsilon_greedy prob = jax.vmap(

jax.vmap(epsilon greedy prob, in axes=(@, None), out axes=o0),

out_axes=0

F uvfa

sample: reverb.Replaysample,
rewards_t: jnp.ndarray,
core_state_extraction name: str = ‘extrinsic_core state’

Tuple[jnp.ndar
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B UVFA Parametrization

Separate parametrization for extrinsic and The implementation of the split in UVFA
intrinsic rewards training mostly includes changes in learner,
and the inference in the actor.
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B META Controller

Selects which policy to use at training and evaluation time

» Policies are represented by [B, y] pair (also called mixtures —
larger mixture index means more exploratory behavior)

* Results in agent learning when it's better to explore and
when to exploit

» Implemented as UCB multi-armed bandit

» Extrinsic episode returns are used as rewards for the bandit

e Each actor has its own meta controller

» Implemented in actor_core.py
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BN Distributed Training

& montezuma_128_actors_agent57_208g_mem_replay_1652688960365_1

©  custom job failed with efror message: CANCELED

Status Sto
1 2 3 Custom job 1D
Created M.
. . . . . . Start time May
Distributed agents can Multiple machines In a distributed setup, Sapsad s 7 day
be trained in multiple training is executed communication Reglon
processes or on on Vertex Al —a GCP between nodes is Encryption type gle-managed key
multiple machines. for building and handled by launchpad
deploying Al models ackage Machine type (Worker pool 0) n1-highmenm-32
Eployfing] : @ f= Machine count (Worker pool 0)

Container Location (Worker pool 0) ger.io/gep 10149
Machine type (Worker pool 1)
Machine count (Worker pool 1)
Container Location (Warker pool 1) ger.io/gep 101 494-agent 57/tmpzkbr
Machine type (Worker pool 2) n1-highmem-16
Machine count (Worker pool 2)

Accelerator (Worker pool 2) NVIDIA_TESLA_P1D

Accelerator count (Warker pool 2)

VERTEX Al TRAINING PIPELINE:

o Package the code for every type of launchpad node (Actor, Learner,
Replay Buffer) into a Docker container (using launchpad)

Machine type (Worker pool 3)

» Build the Docker images locally or on Cloud Build :::,::::::;:::o:?;;s, = 101494 agentSTArpityOlend 20220516-113212-601428
» Specify the hardware requirements for each node type Dataset No managed datass

» Create a custom job on Vertex Al to train the agent :::::T b

» All training artifacts are saved into a Cloud Storage bucket. CL:;"’"’"""'"'"” St

Screenshot of Vertex Al training job configuration
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B Training Environments

Arcade Learning Environment (ALE)

Easy: Boxing Medium: Zaxxon Hard: Montezuma Revenge
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B Code

[ Apache License
Code Mailing List:
https://groups.google.com/g/drlearner/

Contact:
Chris Poulin, Project Lead

chris@patternsandpredictions.com

Predictions

ﬂ Sponsored by Patterns and
www.patternsandpredictions.com
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