
DRLearner

DRLearner.org

Open Source Deep Reinforcement Learning
AGI-22

Chris Poulin

Time Series, RL, and Temporal Difference Learning

A time series is a series of data points in time order. Most commonly [1].

A time series is usually a sequence (equally spaced points in time) [2]

[1] https://en.wikipedia.org/wiki/Time_series
[2] https://online.stat.psu.edu/stat510/book/export/html/661
[3] https://en.wikipedia.org/wiki/Reinforcement_learning
[4] Richard Sutton & Andrew Barto (1998). Reinforcement Learning. MIT Press.
ISBN 978-0-585-02445-5
[5] ttps://en.wikipedia.org/wiki/Temporal_difference_learning
[6] https://people.idsia.ch/~juergen/naturedeepmind.html

©2022 Patterns and Predictions, Phil Tabor, and SoftServe, Inc.

Source: "Time Series Basics", Penn State [2]

Time Series, and advanced analysis of time-based decisions

Temporal difference (TD) learning refers to model-free reinforcement
learning methods which learn by bootstrapping from the current value
function.[5] Was discovered that the firing rate of dopamine neurons
appear to mimic the error function in the algorithm. [4]

And many people were working intensely on the math around these
problems (e.g. Schmidhuber et al) [6]

Reinforcement learning (RL) is an area of machine learning
concerned with how agents take actions in an environment to
maximize reward [3][4]

DeepMind’s Breakthrough

Demonstrated human-level game play on Atari games

[7] V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou, D. Wierstra, M. Riedmiller.
Playing Atari with Deep Reinforcement Learning. Tech Report, 19 Dec. 2013,
http://arxiv.org/abs/1312.5602

[8] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G. Bellemare, A. Graves, M.
Riedmiller, A. K. Fidjeland, G. Ostrovski, S. Petersen, C. Beattie, A. Sadik, I. Antonoglou, H.
King, D. Kumaran, D. Wierstra, S. Legg, D. Hassabis. Human-level control through deep
reinforcement learning. Nature, vol. 518, p 1529, 26 Feb. 2015.
http://www.nature.com/nature/journal/v518/n7540/full/nature14236.html

©2022 Patterns and Predictions, Phil Tabor, and SoftServe, Inc

Source: DeepMind

However, there were a high-profile series of papers that…

“Human-level control through deep reinforcement learning”
(Nature, 2015) [8]

This “deep Q network” started a frenzy in machine Learning
around the area of “Deep Reinforcement Learning” or “DRL”

“Playing Atari with Deep Reinforcement Learning” (arXiv, 2013) [7]

Agent 57 (from DeepMind)

Actors, which include Environments and Agents

* The Agents in this case, have a different scoring

paradigm (intrinsic motivation) in CURIOSITY

A Learner, which is a Reinforcement Learning front end

to a (any) Neural Network.

Using a Replay Buffer (R2D2) to give the system

episodic memories to pull from.

Massively parallel, requiring thousands of GPU hours

©2022 Patterns and Predictions, Phil Tabor, and SoftServe, Inc.

Source: Agent 57, Badia et. al.

Agent57: Outperforming the Atari human benchmark
By Adrià Puigdomènech Badia, Bilal Piot, Steven Kapturowski, Pablo
Sprechmann, Alex Vitvitskyi, Daniel Guo, and Charles Blundell - 2020

Agent 57: Performance

Compared to state-of-the-art ML (2020), best

performance by some metrics (capped mean)

Relatively simple architecture, given the high

performance.

Implementation is still relatively new (non-public)

©2022 Patterns and Predictions, Phil Tabor, and SoftServe, Inc.

Source: Agent 57, Badia et. al.

Agent 57 shows better than human performance

Mastery level game play (compared to human average)

Only second place in overall average for DeepMind’s “best” (2020)

Agent 57: Demo

The Arcade Learning Environment (ALE) is a standard tool

for time dependent agents to compare performance

Zaxxon is a “medium” difficulty game

The classic PitFall gets into “hard” category. As it

requires a large amount of understanding of the ‘game

map’.

Montezuma’s Revenge is considered one of the “hardest”

Atari games, in terms of game space complexity.

In all three cases, Agent 57 is better than an average

human player.

©2022 Patterns and Predictions, Phil Tabor, and SoftServe, Inc.

Source: Agent 57, Badia et. al.

Here Agent 57 is playing Atari Games

Zaxxon
https://www.youtube.com/watch?v=FhJ2yLzi4Kk&list=PL2D_SqpHWZG

gQu4gIUARUWk3rrwBrBEgq

Pitfall
https://www.youtube.com/watch?v=96UNx8SvU_U

Montezuma’s Revenge
https://www.youtube.com/watch?v=A32KP0DCbaE

Our journey: LIT Review

1 We wanted to duplicate the capability of DeepMind's Agent
57, announced 2020, here: Agent 57: Outperforming the
human Atari benchmark

https://deepmind.com/blog/article/Agent57-Outperforming-the-

human-Atari-benchmark

4 Adria and Chris then discussed various implementations of this
available online, and we thought that the best baseline would be
the ACME framework from DeepMind, here: Acme: A Research
Framework for Distributed Reinforcement Learning

https://arxiv.org/abs/2006.00979

https://github.com/deepmind/acme

3 Once we started communication with Adria Badia, he
recommended that I start my efforts based on another effort
called R2D2, here: Recurrent Experience Replay in
Distributed Reinforcement Learning (R2D2)

https://deepmind.com/research/publications/2019/recurrent-

experience-replay-distributed-reinforcement-learning

2 This was apparently an extension of prior work (Badia et al) on
a system called NGU, here: Never Give Up: Learning Directed
Exploration Strategies

https://arxiv.org/abs/2002.06038

5 Experimented with ACME, and was able to successfully
implement/test (on GCP) most of these examples, including
R2D2, here:

https://github.com/deepmind/acme/tree/master/examples

6 Where we left off was that Adria recommended combining the
functionality of NGU with the functionality of R2D2 (on Acme),
as he thought this would be a lesser clone of Agent 57 that he
could make further suggestions on. He has provided a few code
samples, but we (Chris) got stuck on the TF matrix
transformations.

©2022 Patterns and Predictions, Phil Tabor, and SoftServe, Inc.

Never Give Up (NGU)

Converts screen images to abstract feature representations

Features used to learn controllable states and to

generate intrinsic rewards

Needed a modification that was applied to open-source

ACME R2D2

DeepMind tools used to design embedding networks,

episodic novelty module, and calculate intrinsic rewards

Single threaded and lacking the life-long novelty module

©2022 Patterns and Predictions, Phil Tabor, and SoftServe, Inc.

Credit: Never Give Up: Learning Directed Exploration

Strategies, Badia et. al.

NGU IS A BOREDOM FREE C U R I O S I T Y - B AS E D RL METHOD

NGU: Implementation

Implementation of episodic memory using

reverb data table extra spec

Curiosity rewards implemented using

k-nearest neighbors in embedding space

Implement embedding network architecture

using sonnet

Store state embedding representations

in reverb data table

©2022 Patterns and Predictions, Phil Tabor, and SoftServe, Inc.

W i t h a d v i c e f r o m B a d i a e t a l , w e
f i r s t c r e a t e d :

TensorFlow to JAX

Switched from TensorFlow to JAX as backend framework

to enable distributed implementation

Inverse dynamics model for intrinsic rewards

computations – verified by DiscoMaze experiment

Random Network Distillation for intrinsic

reward modulation

Replace n-step bootstrapping with retrace

learning algorithm

Replace Q-network with Universal Value Function

Approximator (UVFA)

©2022 Patterns and Predictions, Phil Tabor, and SoftServe, Inc.

Initial Testing

Metrics customization

Implemented flexible logging module which can be extended
with any custom metric

Added new metric (actions ratio per episode), which
was not previously available in the framework

Restoring model from checkpoint

Implemented script for restoring model from checkpoint,
because it wasn't initially supported by ACME

Note, that optimizer state and training metadata are
preserved, so training can be continued at any point

Actions ratios per episode plot

©2022 Patterns and Predictions, Phil Tabor, and SoftServe, Inc.

Testing and Logging

Also, saving episode examples was implemented for

monitoring model performance over time.

Lunar Lander episode stored in TensorBoard

Videos can be logged

into TensorBoard or locally

Episode examples are

logged each n-th episode

L O G E P I S O D E E X AM P L E S

©2022 Patterns and Predictions, Phil Tabor, and SoftServe, Inc.

Rewards Modeling

©2022 Patterns and Predictions, Phil Tabor, and SoftServe, Inc.

Separate parametrization for extrinsic (points)
and intrinsic (curiosity) rewards

The implementation of the split of UVFA
training mostly includes changes in learner,
and the inference in the actor.

Experiments testing Rewards

Random coin environment

4 actions: move right, left, up, down. Maximum 200 moves.

an agent(a red arrow) and a coin(a green square) are
randomly placed in 15x15 grid

when agent steps over a coin a reward of 1 is given and
the episode terminates

Gym-minigrid environment here: Random Coin

Further comparison shows that indeed NGU is unstable as

the network tries to learn both exploratory and exploitative

policies jointly.

The bigger the beta_max parameter the more sum of

returns for exploitative NGU agents decreases on random

coin environment as opposed to the split version

©2022 Patterns and Predictions, Phil Tabor, and SoftServe, Inc.

©2022 Patterns and Predictions, Phil Tabor, and SoftServe, Inc.

META Controller/Meta-learning

Selects which policy to use at training and evaluation time

Policies are represented by [β, γ] pair (also called mixtures –

larger mixture index means more exploratory behavior)

Results in agent learning when it's better to explore and

when to exploit

Implemented as UCB multi-armed bandit

Extrinsic episode returns are used as rewards for the bandit

Each actor has its own meta controller

Implemented in actor_core.py

Fully Distributed Training

Distributed agents can
be trained in multiple

processes or on
multiple machines.

In a distributed setup,
communication

between nodes is
handled by launchpad
package.

Multiple machines
training is executed

on Vertex AI – a GCP
for building and
deploying AI models.

©2022 Patterns and Predictions, Phil Tabor, and SoftServe, Inc.

V E R T E X AI T R AI N I N G P I P E L I N E :

Package the code for every type of launchpad node (Actor, Learner,

Replay Buffer) into a Docker container (using launchpad)

Build the Docker images locally or on Cloud Build

Specify the hardware requirements for each node type

Create a custom job on Vertex AI to train the agent

All training artifacts are saved into a Cloud Storage bucket.

1 2 3

Screenshot of Vertex AI training job configuration

Game Environment Validation

©2022 Patterns and Predictions, Phil Tabor, and SoftServe, Inc.

Easy: Boxing Medium: Zaxxon Hard: Montezuma Revenge Coinrun

Arcade Learning Environment (ALE) Other Modality Testing: Procgen

Code

Source Code:
https://github.com/PatternsandPredictions/DRLearner_beta

Dev Mailing List:
https://groups.google.com/g/drlearner/

Contact:

Chris Poulin, Project Lead
chris@patternsandpredictions.com

Sponsored by Patterns and Predictions
patternsandpredictions.com

©2022 Patterns and Predictions, Phil Tabor, and SoftServe, Inc.

©2022 Patterns and Predictions, Phil Tabor, and SoftServe, Inc.

Lessons Learned & Next Steps

Computational cost (cloud) is non-trivial

Noise reduction needed (e.g. contrastive learning?)

Come join us!

Refocus on Representations-AGI

Continuous environments (e.g. robotics) combinatorially explosive

API Exploration (other modalities)

Better documenting/on boarding (e.g. instructional videos)

DRLearner

DRLearner.org

Thank you
Chris Poulin (Project Lead-US)

Phil Tabor (Co-Lead-US)
Dzvinka Yarish (Ukraine)

Ostap Viniavskyi (Ukraine)
Oleksandr Buiko (Ukraine)

Yuriy Pryyma (Ukraine)
Mariana Temnyk (Ukraine)
Volodymyr Karpiv (Ukraine)

Mykola Maksymenko (Advisor-Ukraine)
Iurii Milovanov (Advisor-Ukraine)

